# Stack Problems

Problem Index

Patterns of questions when to use a stacks.

Using Same concept

• Nearest greater to right or Next Largest Element
• Nearest greater to left
• Nearest smaller to right
• Nearest smaller to left

Using the code from the previous concept

• Stock Span Problem
• Maximum area of histgram

Using the code from the previous two concepts

• Max area of rectangle in binary matrix

Other good problems on stack

• Rain water trapping
• Implement Min stack with or without extra space

For problems with array think of using stacks, also for problems that uses nested for loops and the inner for loop is dependent upon the outer for loop like the following

for (int i; i< n; i++){
for(int j; j -> 0 to i; j++);
for(int j; j -> i to 0; j--);
for(int j; j -> i to n; j++);
for(int j; j -> n to i; j--);
}

there is a huge chance that a stack data structure can be used to optimize the solution.

## Nearest greater to right or Next Largest Element

### Problem statement

Given an array, print the Next Greater Element to the right for every element. The Next greater Element for an element x is the first greater element on the right side of x in the array. Elements for which no greater element exist, consider the next greater element as -1.

### Examples

Input Array: [4, 5, 2, 25]

Element       NGE
4      -->   5
5      -->   25
2      -->   25
25     -->   -1


Input Array: [1, 3, 2, 4]

Element       NGE
1     -->   3
3     -->   4
2     -->   4
4     -->   -1


### Brute Force approach

• Traverse the whole array, for each element at i, traverse from i+1 to at worst n to get the first element that is greater than the element at i.
• This is a pattern for nested for loops and the inner for loop is dependent upon the outer for loop. So we can use a stack to optimize the solution.
def brute_force_NGE(array: list[int]) -> None:
for i in range(len(array)):
for j in range(i+1, len(array)):
# ...
pass
# ...
pass
return None


### Optimized solution with Stacks

#### Stack implementation

from collections import deque

class Stack:
def __init__(self):
self.container = deque()

def pop(self):
return self.container.pop()

def push(self, value):
self.container.append(value)

def tos(self):
return self.container[-1] if self.container else -1

def isEmpty(self):
return len(self.container) == 0


### Optimized apporach with stacks

• We start from the very last, and maintain a stack.
• if the stack is empty means that there is no element that is just greater to the right of this element so return -1
• if we don't find anything then push the element onto the stack.
• if the a[i] element is < the top of the stack means that tos() is the next greater element,
• if the a[i] is > the top of the stack then we pop() from the stack to find if there is any element > the a[i], if not return -1.
def NGE(array):
stack = Stack()
returnarray = []

end = len(array) - 1

while end >= 0:  # unitl we reach to the front
if stack.isEmpty():
stack.push(array[end])
returnarray.append(-1)
else:
while not stack.isEmpty() and stack.tos() <= array[end]:
stack.pop()

if stack.isEmpty():
stack.push(array[end])
returnarray.append(-1)

elif stack.tos() > array[end]:
returnarray.append(stack.tos())
stack.push(array[end])

end -= 1

return returnarray[::-1]

from rich.console import Console
console = Console()

console.print(NGE([1, 3, 2, 4]))

console.print(NGE([4, 5, 2, 25]))

console.print(NGE([3, 2, 1, 0, 2, 4, 2, 6, 9]))
console.print(NGE([3, 2, 11, -0.4, 2, 4, 2, 6, 91]))


## Next Greater Element I

Find the problem on Leetcode $$\to$$

### Problem Statement

The next greater element of some element $$x$$ in an array is the first greater element that is to the right of $$x$$ in the same array.

You are given two distinct 0-indexed integer arrays nums1 and nums2, where nums1 is a subset of nums2.

For each 0 <= i < nums1.length, find the index j such that nums1[i] == nums2[j] and determine the next greater element of nums2[j] in nums2. If there is no next greater element, then the answer for this query is $$-1$$.

Return an array ans of length nums1.length such that ans[i] is the next greater element as described above.

### Example

Input: nums1 = [4,1,2], nums2 = [1,3,4,2]
Output: [-1,3,-1]
Explanation: The next greater element for each value of nums1 is as follows:
- 4 is underlined in nums2 = [1,3,4,2]. There is no next greater element, so the answer is -1.
- 1 is underlined in nums2 = [1,3,4,2]. The next greater element is 3.
- 2 is underlined in nums2 = [1,3,4,2]. There is no next greater element, so the answer is -1.

Input: nums1 = [2,4], nums2 = [1,2,3,4]
Output: [3,-1]
Explanation: The next greater element for each value of nums1 is as follows:
- 2 is underlined in nums2 = [1,2,3,4]. The next greater element is 3.
- 4 is underlined in nums2 = [1,2,3,4]. There is no next greater element, so the answer is -1.


### Approach

We'll use the up above technique (usage of stacks) to find the next greater element to the right.

### Code

class Solution {
public:
vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {
std::unordered_map<int, int> nge;
vector<int> stack;

int last = nums2.back();
stack.push_back(last);
nge[last] = -1;

int size = nums2.size();

for (int i = size - 2; i >= 0; i--) {
while (not stack.empty() and nums2[i] > stack.back()) {
stack.pop_back();
}

if (stack.empty()) {
nge[nums2[i]] = -1;
} else if (nums2[i] < stack.back()) {
nge[nums2[i]] = stack.back();
}

stack.push_back(nums2[i]);
}

for (int i:nums1) {
}

}
};


## Nearest greater to left (NGEle)

### Problem statement

Given an array, print the Next Greater Element to the left for every element. The Next greater Element for an element x is the first greater element on the left side of x in the array. Elements for which no greater element exist, consider the next greater element as -1.

### Examples

Input Array: [4, 5, 2, 25]

Element       NGEle
4      -->   -1
5      -->   -1
2      -->   5
25     -->   -1


Input Array: [1, 3, 2, 4]

Element       NGEle
1     -->   -1
3     -->   -1
2     -->   3
4     -->   -1


### Approach

• Similar to the NGE but we start from the left because we have to operate on the left sub-array.
from collections import deque

class Stack:
def __init__(self):
self.s = deque()
def push(self, value):
self.s.append(value)
def pop(self):
return self.s.pop()
def tos(self):
return self.s[-1]
def isEmpty(self):
return len(self.s) == 0

def NGEle(array: list[int]):
last = len(array)
out = []

stack = Stack()

for i in range(0, last):
if stack.isEmpty():
stack.push(array[i])
out.append(-1)
else:
while not stack.isEmpty() and stack.tos() < array[i]:
stack.pop()
if stack.isEmpty():
stack.push(array[i])
out.append(-1)
elif stack.tos() > array[i]:
out.append(stack.tos())
stack.push(array[i])
return out

print(NGEle([4, 5, 2, 25]))    # --> [-1, -1, 5, -1]

print(NGEle([1, 3, 2, 4]))    # --> [-1, -1, 3, -1]

print(NGEle([4, 5, 2, 0.5, 25]))
print(NGEle(), NGEle([]), NGEle([-13, -12, -11, -10])) # Some corner cases

[-1, -1, 5, 2, -1]
[-1] [] [-1, -1, -1, -1]


## Nearest smaller to left (NSEle)

### Problem statement

Given an array, print the Next Greater Element to the left for every element. The Next greater Element for an element x is the first greater element on the left side of x in the array. Elements for which no greater element exist, consider the next greater element as -1.

### Examples

Input Array: [4, 5, 2, 25]

Element       NSEle
4      -->   -1
5      -->   4
2      -->   -1
25     -->   2


Input Array: [1, 3, 2, 4]

Element       NSEle
1     -->   -1
3     -->   1
2     -->   1
4     -->   2


### Approach

• Drop the bad Brute force approach, we should use a stack
• Start from the begining and traverse throught the array from $$0 \to \mathcal{N}$$
• For each element check the left sub-array using a stack.
• Pop elements out of the stack if they are greater and push the current element.
• return -1 for empty stack and tos() if we find elements lesser (i.e. the lesser element).
from collections import deque

class Stack:
def __init__(self):
self.s = deque()
def pop(self):
return self.s.pop()
def isEmpty(self):
return len(self.s) == 0
def push(self, value):
self.s.append(value)
def tos(self):
return self.s[-1]

def NSEle(array: list[int]) -> list[int]:
end = len(array)
stack = Stack()

out = []

for i in range(0, end):
if stack.isEmpty():
stack.push(array[i])
out.append(-1)
else:
while not stack.isEmpty() and (stack.tos() > array[i]):
stack.pop()
if stack.isEmpty():
stack.push(array[i])
out.append(-1)
elif stack.tos() < array[i]:
out.append(stack.tos())
stack.push(array[i])
return out


print(NSEle([4, 5, 2, 25]))
print(NSEle([1, 3, 2, 4]))
print(NSEle([4, 5, 2, 0.5, 25]))
print(NSEle([-13, -12, -11, -10]))
print(NSEle(), NSEle([]), NSEle([13, 12, 11, 10])) # Some corner cases

[-1, 4, -1, 2]
[-1, 1, 1, 2]
[-1, 4, -1, -1, 0.5]
[-1, -13, -12, -11]
[-1] [] [-1, -1, -1, -1]


## Minimum Stack with extra space

### Problem Statement

Implement a stack with the following methods:

1. MinimumStack() constructs a new instance of a minimum stack
2. append(int val) appends val to the stack
3. peek() retrieves the last element in the stack
4. min() retrieves the minimum value in the stack
5. pop() pops and returns the last element in the stack Each method should be done in $$\mathcal{O}(1)$$ time. You can assume that for peek, min and pop, the stack is non-empty when they are called.

### Constraints

$$n ≤ 100000$$ where n is the number of calls to append, peek, min, and pop.

### Approach

• We'll use a two stack approach, one to keep track of all the stack elements (self.container) and an auxiliary stack to keep track all the minimum elements.
• Whenever we find a new min element we'll push it into the self.aux stack.
• When we find pop() and find same tos() for self.container and self.aux means that the current minimum element is being popped off. So we pop() from both.
class MinimumStack:
def __init__(self):
self.container = deque()
self.aux = deque()

def append(self, val):
self.container.append(val)

if len(self.aux) == 0:
self.aux.append(val)

elif len(self.aux) > 0 and val < self.aux[-1]:
self.aux.append(val)

def peek(self):
return self.container[-1]

def min(self):
return self.aux[-1]

def pop(self):
if self.aux[-1] == self.container[-1]:
k = self.container.pop()
self.aux.pop()
return k
else:
return self.container.pop()

#include <iostream>
#include <vector>

using namespace std;

class MinStack{
private:
vector<int> stack;
vector<int> auxStack;
int ClassPrivateSize;

public:
MinStack(){
ClassPrivateSize = 0;
}

int size(){
return ClassPrivateSize;
}

void push(int value){

if (ClassPrivateSize == 0){
stack.push_back(value);
auxStack.push_back(value);
ClassPrivateSize += 1;
}else{
if (value < auxStack.back()){
stack.push_back(value);
auxStack.push_back(value);
}else{
stack.push_back(value);
}
ClassPrivateSize += 1;
}
}

int pop(){
if (ClassPrivateSize == 0){
throw runtime_error("pop(): Empty Stack");
}else{

if (auxStack.back() == stack.back()){
int value = stack.back();
auxStack.pop_back();
stack.pop_back();

return value;
}else{
int value = stack.back();
stack.pop_back();
return value;
}
ClassPrivateSize -=1;
}
}

bool isEmpty() const{
if (ClassPrivateSize == 0){
return true;
}
return false;
}

int min(){
return auxStack.back();
}

int peek() {
return stack.back();
}

};


### Time Complexity

• push() takes $$\mathcal{O}(1)$$
• pop() takes $$\mathcal{O}(1)$$
• min() takes $$\mathcal{O}(1)$$
• peek() takes $$\mathcal{O}(1)$$

### Space Complexity

At the very worst total space complexity is $$\mathcal{O}(N)$$

## Stock Span Problem

### Problem Statement

Equivalent problems are on LeetCode and GeeksForGeeks

• The stock span problem is a financial problem where we have a series of n daily price quotes for a stock and we need to calculate span of stock’s price for all n days.
• The span Si of the stock’s price on a given day i is defined as the maximum number of consecutive days just before the given day, for which the price of the stock on the current day is less than its price on the given day.

#### Example testcase

For example, if an array of $$7$$ days prices is given as $$\{100, 80, 60, 70, 60, 75, 85\}$$, then the span values for corresponding 7 days are $$\{1, 1, 1, 2, 1, 4, 6\}$$. For simplicity,

• For day $$1$$, no days are before this day that has more than this day's stock value so return $$1$$
• For day $$3$$, no days are before this day that has more than this day's stock value so return $$1$$
• For day $$4$$, there is exactly one day that has more than this day's stock value so return $$1 + 1 = 2$$
• For the last day stock value is $$85$$ and there is total 5 days before this day which has less stock value: $$\{75, 60, 70, 60, 80\}$$. So return $$5+1 =6$$

### Approach

If we look closely, this problem is really the NGEle problem (Nearest greatest to the left), now instead of returning that we find/count how much (long) ago that nearest smallest was?

So the apporach should be

• Figure out the NGEle first with stack in $$O(\mathcal{N})$$ space.
• Now use as much $$O(\mathcal{N})$$ space as possible beacuse you can not reduce it, so keep the program simple.
• Finally instead of the NGEle array we return the NGEle array along with what was the index number of that NGEle element using a vector of pairs.
• Now for the stockSpan() function we will return the difference between the position of current element and the position of the NGEle element.
#include <iostream>
#include <vector>

using namespace std;

vector<pair<int, int>> NGEle(vector<int> vect){
// Return a pair with NGEle and the position of the NGEle.
vector<pair<int, int>> out;
// While storing the values into stack just add the current index to keep track
// of where the NGEle is located.
vector<pair<int, int>> stack;

// Common NGEle Code [it's the same lolzzzzz].
int index = 0;
for (int element:vect){
if (stack.size() == 0){
out.push_back({-1, -1});
stack.push_back({element, index});
}else{
while ((stack.size() != 0) && (stack.back().first < element)){
stack.pop_back();
}
if (stack.size() == 0){
out.push_back({-1, index});
stack.push_back({element, index});
}else if (stack.back().first > element){
out.push_back({stack.back().first,stack.back().second});
stack.push_back({element, index});
}
}
index++;
}

return out;
}

vector<int> stockSpan(vector<int> marketCap){
// find NGEle Values for each day along with their indexes.
vector<pair<int, int>> ngele = NGEle(marketCap);

vector<int> out;

int idx = 0;

// Now for each element find the distance between it and it's NGEle.
for (auto i: ngele){
if (i.second != -1){
out.push_back(idx - i.second + 1);
}else{
out.push_back(1);
}
idx++;
}

return out;
}


Let's test the code out. Run the following code to see the code working.

int main(){
vector<int> v = {100, 70, 85, 59, 15, 60, 87};
vector<pair<int, int>> ngele = NGEle(v);
vector<int> stkspan = stockSpan(v);

cout << "Market CAP" <<endl;
for (auto j: v)
cout << j << " ";
cout << endl;
cout << endl;

// ngele Array
for (auto i: ngele){
cout << i.first << " from: " << i.second << "\n";
}
cout << endl;

cout << "Stock Span" <<endl;
for (auto h: stkspan)
cout << h << " ";
cout << endl;

return 0;
}


### Time Complexity

At the very worst case time complexity is $$O(\mathcal{N})$$ because we are traversing the marketCap vector only once during the subroutine NGEle() and once in the subroutine stockSpan().

### Space Complexity

Space complexity is $$O(\mathcal{N})$$.

## Maximum Area Histogram

### Problem Statement

Similar problem on Leetcode

Given an array of integers heights representing the histogram's bar height where the width of each bar is $$1$$, return the area of the largest rectangle in the histogram.

#### Examples Input: heights = [2,1,5,6,2,3]
Output: 10

Explanation:
The above is a histogram where width of each bar is 1.
The largest rectangle is shown in the red area, which has an area = 10 units.


### Time and Space complexity

$$O(\mathcal{N})$$ time and space is taken.

### Code

#### Subroutines

Two subroutines are needed $$\to$$ and these are NSEle and NSR. Neareast smaller to the left and neareast smaller to the right.

#### NSR (NSE, Nearest smaller to the Right) implementation

#include <iostream>
#include <vector>

using std::vector;
using std::pair;

vector<pair<int, int>> NSE(vector<int> vect){
// Nearest smallest to the right
// finds and returns NSE array pair.first -> value
// pair.second -> index of the NSE element
vector<pair<int, int>> out;
vector<pair<int, int>> stack;

int last = vect.size() - 1;

while (last != -1){
if (stack.size() == 0){
out.push_back({-1, -1});
stack.push_back({vect[last], last});
}else{
while ((stack.size() != 0) && (stack.back().first >= vect[last])){
stack.pop_back();
}
if (stack.size() == 0){
out.push_back({-1, -1});
stack.push_back({vect[last], last});
}else if (stack.back().first < vect[last]){
out.push_back({stack.back().first, stack.back().second});
stack.push_back({vect[last], last});
}
}

last--;
}

return out;
}


#### NSEle (Nearest smaller to the left) implementation

vector<pair<int, int>> NSEle(vector<int> vect){

vector<pair<int, int>> out;
vector<pair<int, int>> stack;

int start = 0;

while (start != vect.size()){
if (stack.size() == 0){
out.push_back({-1, -1});
stack.push_back({vect[start], start});
}else{
while ((stack.size() != 0) && (stack.back().first >= vect[start])){
stack.pop_back();
}
if (stack.size() == 0){
out.push_back({-1, -1});
stack.push_back({vect[start], start});
}else if (stack.back().first < vect[start]){
out.push_back({stack.back().first, stack.back().second});
stack.push_back({vect[start], start});
}
}

start++;
}

return out;
}


#### The main function maxAreaHistogram()

void maxAreaHistogram(vector<int> v){

vector<int> out;

vector<pair<int, int>> nsr = NSE(v);
// NSR has to-be reverse because we started from the begining
std::reverse(nsr.begin(), nsr.end());

vector<pair<int, int>> nsele = NSEle(v);

int currentMax = -1;

int index = 0;
int currentArea = 0;

for (int i:v){

if ((nsr[index].first != -1) && (nsele[index].first != -1)){
// Both upper and lower bound is within the array
// Start from left bound + 1
// end at the upper bound - 1 (don't cosinder the upper bound bcz it's smaller)
currentArea = i * ((nsr[index].second - 1) - (nsele[index].second + 1) + 1);
}else if ((nsr[index].first == -1) && (nsele[index].first != -1)){
// right side -> -1 no smaller element to the right
// Start from left bound + 1, (don't consider the left bound)
// end at last
currentArea = i * (v.size()-1 - (nsele[index].second + 1) + 1);
}else if ((nsele[index].first == -1) && (nsr[index].first != -1)){
// No bound to the left
// So from index zero -> the upper bound
currentArea = i * (nsr[index].second - 1 + 1);
}else{
// No bound at all -> size * magnitude
currentArea = i * (v.size());
}

out.push_back(currentArea);

index++;
}

for (auto value:out)
std::cout << BOLDBLUE << value << " ";
std::cout << std::endl;
}


#### Testing the code out

int main(){
// testsForNSE();
// testsForNSEle();
vector<int> v = {1, 2, 3, 1, 2, 3, 4, 5, 5, 5};
std::cout << BOLDCYAN << "TEST CASE 1" << RESET << std::endl;
maxAreaHistogram(v);

vector<int> v1 = {2,1,5,6,2,3};
std::cout << BOLDYELLOW << "TEST CASE 2" << RESET << std::endl;
maxAreaHistogram(v1);

vector<int> v2 = {2,4,1,4,4,5};
std::cout << BOLDMAGENTA << "TEST CASE 4" << RESET << std::endl;
maxAreaHistogram(v2);

vector<int> v12 = {5,5,5,5,5,2,4,2,1};
std::cout << BOLDGREEN << "TEST CASE 3" << RESET << std::endl;
maxAreaHistogram(v12);

vector<int> v23 = {3,2,1};

std::cout << BOLDMAGENTA << "TEST CASE 4" << RESET << std::endl;
maxAreaHistogram(v23);

vector<int> v231 = {10, 9, 8, 7};

std::cout << BOLDRED << "TEST CASE 4" << RESET << std::endl;
maxAreaHistogram(v231);

vector<int> v2321 = {7,8,9,10};

std::cout << BOLDMAGENTA << "TEST CASE 4" << RESET << std::endl;
maxAreaHistogram(v2321);
return 0;
}


#### Output

TEST CASE 1
10 4 3 10 12 15 16 15 15 15

TEST CASE 2
2 6 10 6 8 3

TEST CASE 4
4 4 6 12 12 5

TEST CASE 3
25 25 25 25 25 16 4 16 9

TEST CASE 4
3 4 3

TEST CASE 4
10 18 24 28

TEST CASE 4
28 24 18 10


## Max Area Rectangle under binary matrix

Problem On leetcode $$\to$$

### Problem Statement

Given a binary matrix $$\mathcal{M}$$ find out what is the maximum area of the rectangle $$R$$, where all elements in $$R = 1$$ Explanation

Input: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]

Output: 6

Explanation: The maximal rectangle is shown in the above picture.

### Constraints:

• rows == matrix.length
• cols == matrix[i].length
• 1 <= row, cols <= 200
• matrix[i][j] is $$0$$ or $$1$$.

### Approach

• Then we call the MAH() algorithm implemented in the previous question.
• Then we find the maximum accross all levels.

## The Skyline problem

Same Problem on Leetcode $$\to$$

### Problem Statement

A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Given the locations and heights of all the buildings, return the skyline formed by these buildings collectively.

## Score of Parentheses

Problem on leetcode $$\to$$

### Problem Statement

Given a balanced parentheses string s, return the score of the string - "()" has score 1, - AB has score A + B, where A and B are balanced parentheses strings, - (A) has score 2 * A, where A is a balanced parentheses string.

### Examples

Input: s = "()"
Output: 1

Input: s = "(())"
Output: 2

Input: s = "()()"
Output: 2


### Constraints

• $$2$$ <= s.length <= $$50$$
• s consists of only '(' and ')'.
• s is always a balanced parentheses string.

### Approach

• Using recursion because seems like a recursive problem with pattern of return (what is inside of(what is inside of (what is inside))).

### C++ code

class Solution {
private:
int globalTracker = 0;
public:
int scoreOfParentheses(string s) {
int score = 0;

// Using recursion bcz seems like a recursive problem
// return (what is inside of(what is inside of (what is inside)))

while(globalTracker < s.size() - 1){
char first = s.at(globalTracker);
globalTracker++;
char second = s.at(globalTracker);

if (first == '('){
if (second == ')'){
score = score + 1;
globalTracker++;
} else {
score = score + 2 *(scoreOfParentheses(s));
}
} else {
return score;
}

}

return score;
}
};


## Implement a stack with single queue

Find the problem on leetcode

### Problem Statement

Implement a last-in-first-out (LIFO) stack using only single queue. The implemented stack should support all the functions of a normal stack (push, top, pop, and empty). Implement the MyStack class

• void push(int x) Pushes element $$x$$ to the top of the stack.
• int top() Returns the element on the top of the stack.
• int pop() Removes the element on the top of the stack and returns it.
• boolean empty() Returns true if the stack is empty, false otherwise.

### Apporach

It is easy to implement a stack with two queues. But the question requires us to use a single queue for storage. Our apporach will be the following:

Once a value comes to our stack we'll insert it into the internal queue, then from $$i \in \{0 \dots size - 1\}$$ times we'll take the front of the queue and push it to the back of the queue. Then pop from the front of the queue. This will rearange the queue to have the data ordered like a stack.

Thus our queue.front() will return the element on the top of the stack and queue.pop() will pop the top of the stack.

### Code

class MyStack {
public:

queue<int> q;
int size = 0;

MyStack() {}

void push(int x) {
size++;
q.push(x);

for (int i = 0; i < size - 1; i++) {
q.push(q.front());
q.pop();
}
}

int pop() {
int val = q.front();
q.pop();

size--;
return val;
}

int top() {
return q.front();
}

bool empty() {
return size == 0;
}
};

/**
* Your MyStack object will be instantiated and called as such:
* MyStack* obj = new MyStack();
* obj->push(x);
* int param_2 = obj->pop();
* int param_3 = obj->top();
* bool param_4 = obj->empty();
*/


## Cd and pwd commands

### Problem Statement

Implement the Unix like cd and pwd commands. - pwd of root should return /, - cd /home/vasya will go to cd /home/vasya, then if we do cd /home/theroyakash it'll go to root and then go to home to theroyakash, - cd /home/vasya and then cd home/theroyakash sends present working directory to cd /home/vasya/home/theroyakash, notice that second cd do not start with /.

### Approach

Standard Stack approach.

### Code

#include <iostream>
#include <string.h>
#include <vector>

using namespace std;

/*
* Tokenise a string of path to individual folders
* eg. /home/theroyakash/go should return <home, theroyakash, go>
*/
vector<string> tokenize(string s, char delimeter) {
int size = s.size();
vector<string> tokens;
string current = "";

for (int i = 0; i < size; i++) {
if (s[i] == delimeter and current != "") {
tokens.push_back(current);
current = "";
} else if (s[i] != delimeter){
current += s[i];
}
}

tokens.push_back(current);

}

int main() {
int commands;
cin >> commands;

vector<string> stack;

while (commands--) {
string command;
cin >> command;

if (command == "pwd") {
if (stack.empty()) {
cout << "/" << endl;
continue;
}

for (int i = 0; i < stack.size(); i++) {
if (i == 0 and stack[i] != '/') {
cout << "/";
}
cout << stack[i] << "/";
}

cout << endl;
}

if (command == "cd") {
string directoryString;
cin >> directoryString;

if (directoryString == '/') {
stack.clear();
}

vector<string> tokenizedDirectory = tokenize(directoryString, '/');

for (auto directory : tokenizedDirectory) {
// cout << directory << endl;

if (directory != "..") {
stack.push_back(directory);
} else {
stack.pop_back();
}
}
}
}
return 0;
}